
RIDGE REGRESSION

Ridge Regression
Ridge Regression is a technique for analyzing multiple regression data that suffer from multicollinearity.

When multicollinearity occurs, least squares estimates are unbiased, but their variances are large so they
may be far from the true value.

Ridge regression is carried out on the linear regression model

Y = Xβ + ϵ

where

Y is the n × 1 vector of observations of the dependent variable

X is the N × K matrix of regressors

β is the k × 1 vector of regression coefficients

ϵ is the n × 1 vector of errors

Ridge Estimator
The objective function is given by

f(β) = (y − Xβ)′(y − Xβ) + λβ′β

We differentiate the function with respect to β and set the result equal to zero and have:

∂f(β)
∂β

= −2XT (y − Xβ) + 2λβ = 0

Solving for β

XT Xβ + λIβ = XT y

Then

ˆβRidge = (XT X + λI)XT y

Where λ is a positive constant

Bias and Variance of Ridge Estimator
We derive the bias and the variance of the ridge estimator under the commonly made assumption that
conditional on X, the errors have a zero mean and a constant variance σ2 and are uncorrelated.

E[ϵ|X] = 0

V ar[ϵ|X] = σ2I

where σ2 is a positive constant and I is the n × n identity matrix.

By Dr. Mutua Kilai 14



Bias and Variance of Ridge Estimator RIDGE REGRESSION

Bias

The conditional expected value of the ridge estimator β̂λ is

E[β̂λ|X] = (XT X + λI)−1XT Xβ

which is different from β unless the λ = 0

The bias of the estimator is

E[β̂λ|X] − β =
[
(XT X + λI)−1 − (XT X)−1

]
XT Xβ

Proof

We can write the ridge estimator as

β̂λ = (XT X + λI)−1XT y

= (XT X + λI)−1XT (Xβ) + ϵ

= (XT X + λI)−1XT Xβ + (XT X + λI)−1XT ϵ

(7)

Therefore

E[β̂λ] = (XT X + λI)−1XT Xβ + (XT X + λI)−1XT E[ϵ|X]
= (XT X + λI)−1XT Xβ + (XT X + λI)−1XT × 0
= (XT X + λI)−1XT Xβ

(8)

The ridge estimator is unbiased if and only if

(XT X + λI)−1XT X = I

Variance

The covariance of the ridge estimator is given by:

V ar[β̂λ|X] = σ2(XT X + λI)−1XT X(XT X + λI)−1

Proof

Remember that the OLS estimator β̂ has conditional variance

V ar[β̂] = σ2(XT X)−1

We can write the ridge estimator as a function of the OLS estimator

β̂λ = (XT X + λI)−1XT y

= (XT X + λI)−1XT X(XT X)−1XT y

= (XT X + λI)−1XT Xβ̂

(9)
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How to choose λ RIDGE REGRESSION

Therefore:

V ar[β̂λ] = (XT X + λI)−1XT XV ar[β̂λ][(XT X + λI)−1XT X]T

= (XT X + λI)−1XT XV ar[β̂λXT X(XT X + λI)−1]
= (XT X + λI)−1XT Xσ2(XT X)−1XT X(XT X + λI)−1

= σ2(XT X + λI)−1XT X(XT X + λI)−1

(10)

How to choose λ

The most common way to find the best λ is by using leave-one-out cross-validation.

The steps are as follows:

• We choose a grid of p possible values of λ1, λ2, ..., λp for the penalty parameter

• for i = 1, ..., N we exclude the i − th observation (yi, xi) from the sample and use the remaining
n − 1 observations to compute p ridge estimates of β denoted by ˆβλp,i and compute p out-of-sample
predictions of the excluded observation

• We compute the MSE of the predictions

MSEλ = 1
N

N∑
i=1

(yi − ŷλp)2

• We choose as the optimal penalty parameter λ the one that minimizes the MSE of the predictions

Example

As the beginning of ridge regression, it is recommended to standardize the predictors. You can still carry
out ridge regression without doing so, but standardization would improve the effect of ridge regression, as it
makes the shrinking fair to each coefficients. Luckily, the function that we are going to use here automatically
standardizes the data, so we don’t need to do the standardization by ourselves.

We use the MASS package in R
# loading the data

data <- read.csv("ridge.csv")

# package to use

library(MASS)

# model with a range of lambdas

fit = lm.ridge(hipcenter ~ ., data, lambda = seq(0, .4, 1e-3))

We can observe how the coefficients shrink as λ grows larger:
par(mar = c(4, 4, 0, 0), cex = 0.7, las = 1)
matplot(fit$lambda, coef(fit), type = "l", ylim = c(-1, 3),

xlab = expression(lambda), ylab = expression(hat(beta)))
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How to choose λ RIDGE REGRESSION
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To select the optimal value of λ we use select function
select(fit)

## modified HKB estimator is 5.425415
## modified L-W estimator is 3.589434
## smallest value of GCV at 0.4

So the optimal value of λ is at 0.4
par(mar = c(4, 4, 0, 0), cex = 0.7, las = 1)
plot(names(fit$GCV), fit$GCV, type = 'l',

xlab = expression(lambda), ylab = "GCV Score")
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DETECTING OUTLIERS IN REGRESSION MODELS
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Detecting Outliers in Regression Models
Outliers are observations that appear inconsistent with the rest of dataset.

A more precise definition, they are observations that are distinct from most of the data points in the sample.

There are many methods of detecting outliers in regression models. They include:

• Graphical methods
• Analytical methods

Graphical Methods
The graphical methods include scatter graph, boxplot, williams graph, Q-Q plot and graph of predicted
residuals

Scatter and Box plot

Scatter plot is a line of best fit (alternatively called “trendline”) drawn in order to study the relationship
between the variables measured. For a set of data variables (dimensions) X1, X2, ..., Xkthe scatter plot
matrix shows all the pairwise scatter plots of the variables on the dependent variable.

A box plot is a method for graphically depicting groups of numerical data through their quartiles (i.e. Mean,
Median Mode, quartiles). Box plots may also have lines extending vertically from the boxes (whiskers)
indicating variability outside the upper and lower quartiles. It is also called box-and-whisker plot and box-
and-whisker diagram. Outliers may be plotted as individual points and it can be used for outlier detection
in regression model, where the primary aim here is not to fit a regression model but find out outliers using
regression and to improve a regression model by removing the outliers.
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Analytical Methods DETECTING OUTLIERS IN REGRESSION MODELS

# loading the data

data <- read.csv("ridge.csv")

# model

fit = lm(hipcenter ~ ., data)

# extract the residuals

res <- fit$residuals

# boxplot of the residuals

boxplot(res)
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Analytical Methods
The analytical methods include:

• predicted residuals
• Standardized residuals
• Jack-nife residuals
• Cook’s distance
• Atkinsons measure
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Analytical Methods DETECTING OUTLIERS IN REGRESSION MODELS

Studentized and Standardized Residuals

The Standardized residuals are given by:

ϵS.i = ϵ̂i

σ̂
√

1 − hi

= ϵ̂i√
σ̂2(1 − hi)

Studentized residuals with large absolute values are considered large. If the regression model is appropriate,
with no outlying observations, each Studentized residual follows a t distribution with n-k-1 degrees of freedom.

If the Studentized residual is divided by the estimates of its standard error so that the outcome is a residual
with zero mean and standard deviation one, it becomes standardized residual denoted by

ϵST.i = ϵ̂i

sd(σ)

The standardized residuals, di > 3 potentially indicate outlier
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